Lecture 26

Andrei Antonenko

April 11, 2003

1 Orthogonality

Let V be a Euclidean space, and let v and u be 2 vectors in this space. Then we can define the angle between these 2 vectors.

Definition 1.1. The **angle** θ between two vectors v and u from the vector space V can be defined by the following formula:

$$
\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}
$$

Actually, we should check that this definition is correct — we have an expression for cosine, and it should belong to the interval $[-1, 1]$! It is easy to check. From Cauchy-Bunyakovsky-Schwartz inequality we have

$$
|\langle u, v \rangle| \le ||u|| ||v||,
$$

and so we will have

$$
-1 \le \frac{\langle u, v \rangle}{\|u\| \|v\|} \le 1
$$

Let's note that this is a general definition which works in many different spaces, and not only in \mathbb{R}^2 and \mathbb{R}^3 . For example, by this formula we can define the angle between two functions from $C[a, b]$ or between two polynomials.

Example 1.2. Let $u = (1, 2, 3)$ and let $v = (-1, 2, -2)$. Then $\langle u, v \rangle = -1 + 4 - 6 = -4$, $||u|| =$ $\sqrt{1+4+9} = \sqrt{14}$, and $||v|| =$ √ $\overline{1+4+4} = 3$. So, the angle θ between these two vectors can be defined by the following formula:

$$
\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|} = \frac{-4}{3\sqrt{14}}.
$$

Another important concept is a normalization of the vector.

Definition 1.3. If v is a vector from the vector space V then the vector

 \overline{v} $||v||$

is called a **normalization** of v .

The main property of normalization is that it's norm is equal to 1. So, we take a vector which is proportional to v with the "length" 1.

Now we'll give the very important definition — main definition of this lecture.

Definition 1.4. Two vectors u and v are called **orthogonal** if

$$
\langle u, v \rangle = 0.
$$

Let we have a vector v from the Euclidean space V. Let's consider all vectors u which are orthogonal to v, i.e. the set of vectors u such that $\langle v, u \rangle = 0$:

$$
v^{\perp} = \{ u \in V | \langle u, v \rangle = 0 \} \quad \text{(read "v-perp")}
$$

This set is called the **orthogonal complement** to the vector v . Now let S be a set of vectors. Then we can define S^{\perp} as the following set:

$$
S^{\perp} = \{ u \in V | \langle u, v \rangle = 0 \text{ for all } v \in S \}
$$

This set S^{\perp} is called the **orthogonal complement** to the set S. Let's note that S^{\perp} is a vector space. First, **0** is orthogonal to any other vector, since $\langle 0, v \rangle = 0$ for all v. So, $0 \in S^{\perp}$. Now, let $u_1, u_2 \in S^{\perp}$, such that $\langle u_1, v \rangle = 0$ for all v and $\langle u_2, v \rangle = 0$ for all v. So it follows that $\langle u_1 + u_2, v \rangle = \langle u_1, v \rangle + \langle u_2, v \rangle = 0$, and thus $u_1 + u_2$ belongs to S^{\perp} . Moreover, it is obvious to check that if u belongs to S^{\perp} then ku belongs to it. Thus, we proved that S^{\perp} is a vector space.

Geometrically speaking, let's consider the case of 3-dimensional space. Let v be a vector from the 3-dimensional space, then v^{\perp} is the plane which is perpendicular to this vector.

Now let's consider more difficult case, when S consists of 2 vectors v and u . In this case the line $\mathcal L$ will be orthogonal to both vectors. It is illustrated on the picture below.

Our goal is to describe u^{\perp} or S^{\perp} somehow, for example give a basis of it. Actually, for the simple spaces, like \mathbb{R}^n the basis of the orthogonal complement can be found as a basis in the solution space of the corresponding homogeneous system. We'll show it on the example.

Example 1.5. Let $v = (1, -3, 4)$. Let's find the basis of the orthogonal complement to u, i.e. the basis of u^{\perp} . Vector $u = (x, y, z)$ is orthogonal to v if $\langle v, u \rangle = x - 3y + 4z = 0$. So, we have an equation:

$$
x - 3y + 4z = 0.
$$

This can be considered as a homogeneous system with one equation and 3 variables. Here, variable x is leading and y, z are free. So, the basis can be obtained by assigning the value 1 to y and 0 to z, and after that 0 to y and 1 to z:

- $y = 1$; $z = 0$: $x = 3$, so the corresponding vector is $(3, 1, 0)$;
- $y = 0$; $z = 1$: $x = -4$, so the corresponding vector is $(-4, 0, 1)$.

Thus, the basis of the plane orthogonal to the vector $(1, -3, 4)$ is $\{(3, 1, 0); (-4, 0, 1)\}.$

Example 1.6. Let $S = \{(1, 2, 2), (2, 3, 1)\}\$. Let's find the basis of S^{\perp} . Vector $v = (x, y, z)$ is in the S^{\perp} if $\langle v,(1,2,2)\rangle = 0$ and $\langle v,(2,3,1)\rangle = 0$. We can write it as a homogeneous system with 3 unknowns and 2 equations:

$$
\begin{cases}\n x + 2y + 2z = 0 \\
 2x + 3y + z = 0\n\end{cases}
$$

Reducing it to row echelon form we get the following system:

$$
\begin{cases}\nx + 2y + 2z = 0 \\
- y - 3z = 0\n\end{cases}
$$

Here, z is free variable and x and y are leading. So, The basis will consist of 1 vector and can be obtained by assigning the value 1 to z :

• $z = 1$: $y = -3$, $x = 4$, so the corresponding vector is $(1, -3, 4)$.

Thus, S^{\perp} is the line which contains the vector $(1, -3, 4)$.

Now we will see why orthogonal vectors are nice. We will call vectors v_1, v_2, \ldots, v_n orthogonal if each pair of them is orthogonal, i.e. if

$$
\langle v_i, v_j \rangle = 0 \text{ for } i \neq j.
$$

The following theorem gives an important property of orthogonal vectors.

Theorem 1.7. If nonzero vectors v_1, v_2, \ldots, v_n are orthogonal, then they are linearly independent.

Proof. Let's write a zero linear combination of these vectors:

$$
a_1v_1 + a_2v_2 + \cdots + a_nv_n = 0.
$$

Now, we'll multiply it by v_1 . We will have:

$$
\langle a_1v_1 + a_2v_2 + \cdots + a_nv_n, v_1 \rangle = \langle 0, v_1 \rangle = 0.
$$

Using linearity of the scalar product we get:

$$
a_1 \langle v_1, v_1 \rangle + a_2 \langle v_2, v_1 \rangle + \cdots + a_n \langle v_n, v_1 \rangle = 0.
$$

All terms except the first one are equal to 0, so we get

$$
a_1 \langle v_1, v_1 \rangle = 0.
$$

Since $\langle v_1, v_1 \rangle \neq 0$ then $a_1 = 0$. In the same way we can prove that $a_2, a_3, \ldots, a_n = 0$. So, vectors are linearly independent. \Box

Another theorem gives us a mathematically exact formulation of the fact known from the school geometry.

Theorem 1.8 (Pythagoras theorem). If u and v are orthogonal vectors, then

$$
||u + v||2 = ||u||2 + ||v||2.
$$

Proof. We have:

$$
||u + v||2 = \langle u + v, u + v \rangle
$$

= $\langle u, u \rangle + \langle u, v \rangle + \langle v, u \rangle + \langle v, v \rangle$
= $\langle u, u \rangle + 2\langle u, v \rangle + \langle v, v \rangle$.

Since v and u are orthogonal, $\langle u, v \rangle = 0$, and so $||u + v||^2 = \langle u, u \rangle + \langle v, v \rangle = ||u||^2 + ||v||^2$. \Box

In 2-dimensional space this theorem is exactly the Pythagoras theorem from the school geometry. The following picture illustrates it:

$$
\begin{array}{c}\n\sqrt{u+v} \\
\hline\nv\n\end{array}
$$

From this theorem it follows that if we have n orthogonal vectors in the n-dimensional vector space, then they form a basis. Moreover, this basis is nice, and we can find coordinates in this basis very easily. We'll demonstrate it in the next example.

Example 1.9. Let $v_1 = (1, 2, 1), v_2 = (2, 1, -4)$ and $v_3 = (3, -2, 1)$. We can check that these vectors are orthogonal, i.e. $\langle v_1, v_2 \rangle = 0$, $\langle v_1, v_3 \rangle = 0$, and $\langle v_2, v_3 \rangle = 0$. So, they are linearly independent by theorem (1.7), and since there are 3 vectors, they form a basis in \mathbb{R}^3 , i.e. each vector can be represented as a linear combination of them.

Now let $u = (7, 1, 9)$. We want to represent u as a linear combination of $v_1, v_2,$ and v_3 , i.e. find coefficients $a_1, a_2,$ and a_3 such that

$$
u = a_1v_1 + a_2v_2 + a_3v_3, \tag{1}
$$

i.e.

$$
(7,1,9) = a1(1,2,1) + a2(2,1,-4) + a3(3,-2,1).
$$

The familiar way to do it is to set up a linear system and solve it for unknowns a_1 , a_2 and $a_3.$

But there is an easier way to do it. Let's multiply the equality (1) by v_1 , v_2 , and then by v_3 . We will have:

$$
\langle u, v_1 \rangle = a_1 \langle v_1, v_1 \rangle + a_2 \langle v_2, v_1 \rangle + \langle v_3, v_1 \rangle
$$

= $a_1 \langle v_1, v_1 \rangle$,

since $\langle v_2, v_1 \rangle = \langle v_3, v_1 \rangle = 0$. So,

$$
a_1 = \frac{\langle u, v_1 \rangle}{\langle v_1, v_1 \rangle} = \frac{7 + 2 + 9}{1 + 4 + 1} = \frac{18}{6} = 3.
$$

Now,

$$
\langle u, v_2 \rangle = a_1 \langle v_1, v_2 \rangle + a_2 \langle v_2, v_2 \rangle + \langle v_3, v_2 \rangle
$$

= $a_2 \langle v_2, v_2 \rangle$,

since $\langle v_1, v_2 \rangle = \langle v_3, v_2 \rangle = 0$. So,

$$
a_2 = \frac{\langle u, v_2 \rangle}{\langle v_2, v_2 \rangle} = \frac{14 + 1 - 36}{4 + 1 + 16} = \frac{-21}{21} = -1.
$$

Now,

$$
\langle u, v_3 \rangle = a_1 \langle v_1, v_3 \rangle + a_2 \langle v_2, v_3 \rangle + \langle v_3, v_3 \rangle
$$

= $a_3 \langle v_3, v_3 \rangle$,

since $\langle v_1, v_3 \rangle = \langle v_2, v_3 \rangle = 0$. So,

$$
a_3 = \frac{\langle u, v_3 \rangle}{\langle v_3, v_3 \rangle} = \frac{21 - 2 + 9}{9 + 4 + 1} = \frac{28}{14} = 2.
$$

So, we got that

$$
u = 3v_1 - v_2 + 2v_3.
$$